堆和堆的应用:堆排序和优先队列

1.堆

堆(Heap))是一种重要的数据结构,是实现优先队列(Priority Queues)首选的数据结构。由于堆有很多种变体,包括二项式堆、斐波那契堆等,但是这里只考虑最常见的就是二叉堆(以下简称堆)。

堆是一棵满足一定性质的二叉树,具体的讲堆具有如下性质:父节点的键值总是不大于它的孩子节点的键值(小顶堆), 堆可以分为小顶堆大顶堆,这里以小顶堆为例,其主要包含的操作有:

  • insert()
  • extractMin
  • peek(findMin)
  • delete(i)

由于堆是一棵形态规则的二叉树,因此堆的父节点和孩子节点存在如下关系:

设父节点的编号为 i, 则其左孩子节点的编号为2*i+1, 右孩子节点的编号为2*i+2
设孩子节点的编号为i, 则其父节点的编号为(i-1)/2

由于二叉树良好的形态已经包含了父节点和孩子节点的关系信息,因此就可以不使用链表而简单的使用数组来存储堆。

要实现堆的基本操作,涉及到的两个关键的函数

  • siftUp(i, x) : 将位置i的元素x向上调整,以满足堆得性质,常常是用于insert后,用于调整堆;
  • siftDown(i, x):同理,常常是用于delete(i)后,用于调整堆;

具体的操作如下:

可以看到siftUpsiftDown不停的在父节点和子节点之间比较、交换;在不超过logn的时间复杂度就可以完成一次操作。

有了这两个基本的函数,就可以实现上述提及的堆的基本操作。

首先是如何建堆,实现建堆操作有两个思路:

  • 一个是不断地insertinsert后调用的是siftUp
  • 另一个将原始数组当成一个需要调整的堆,然后自底向上地
    在每个位置i调用siftDown(i),完成后我们就可以得到一个满足堆性质的堆。这里考虑后一种思路:

通常堆的insert操作是将元素插入到堆尾,由于新元素的插入可能违反堆的性质,因此需要调用siftUp操作自底向上调整堆;堆移除堆顶元素操作是将堆顶元素删除,然后将堆最后一个元素放置在堆顶,接着执行siftDown操作,同理替换堆顶元素也是相同的操作。

建堆

那么建堆操作的时间复杂度是多少呢?答案是O(n)。虽然siftDown的操作时间是logn,但是由于高度在递减的同时,每一层的节点数量也在成倍减少,最后通过数列错位相减可以得到时间复杂度是O(n)

extractMin
由于堆的固有性质,堆的根便是最小的元素,因此peek操作就是返回根nums[0]元素即可;
若要将nums[0]删除,可以将末尾的元素nums[n-1]覆盖nums[0],然后将堆得size = size-1,调用siftDown(0)调整堆。时间复杂度为logn

peek
同上

delete(i)

删除堆中位置为i的节点,涉及到两个函数siftUpsiftDown,时间复杂度为logn,具体步骤是,

  • 将元素last覆盖元素i,然后siftDown
  • 检查是否需要siftUp

注意到堆的删除操作,如果是删除堆的根节点,则不用考虑执行siftUp的操作;若删除的是堆的非根节点,则要视情况决定是siftDown还是siftUp操作,两个操作是互斥的。

case 1 :

删除中间节点i21,将最后一个节点复制过来;

这里写图片描述

由于没有进行siftDown操作,节点i的值仍然为6,因此为确保堆的性质,执行siftUp操作;

这里写图片描述

case 2

删除中间节点i,将值为11的节点复制过来,执行siftDown操作;
这里写图片描述

由于执行siftDown操作后,节点i的值不再是11,因此就不用再执行siftUp操作了,因为堆的性质在siftDown操作生效后已经得到了保持。

这里写图片描述


可以看出,堆的基本操作都依赖于两个核心的函数siftUpsiftDown;较为完整的Heap代码如下:

2.堆的应用:堆排序

运用堆的性质,我们可以得到一种常用的、稳定的、高效的排序算法————堆排序。堆排序的时间复杂度为O(n*log(n)),空间复杂度为O(1),堆排序的思想是:
对于含有n个元素的无序数组nums, 构建一个堆(这里是小顶堆)heap,然后执行extractMin得到最小的元素,这样执行n次得到序列就是排序好的序列。
如果是降序排列则是小顶堆;否则利用大顶堆。

Trick

由于extractMin执行完毕后,最后一个元素last已经被移动到了root,因此可以将extractMin返回的元素放置于最后,这样可以得到sort in place的堆排序算法。

具体操作如下:


当然,如果不使用前面定义的heap,则可以手动写堆排序,由于堆排序设计到建堆extractMin, 两个操作都公共依赖于siftDown函数,因此我们只需要实现siftDown即可。(trick:由于建堆操作可以采用siftUp或者siftDown,而extractMin是需要siftDown操作,因此取公共部分,则采用siftDown建堆)。

这里便于和前面统一,采用小顶堆数组进行降序排列。

3.堆的应用:优先队列

优先队列是一种抽象的数据类型,它和堆的关系类似于,List和数组、链表的关系一样;我们常常使用堆来实现优先队列,因此很多时候堆和优先队列都很相似,它们只是概念上的区分。
优先队列的应用场景十分的广泛:
常见的应用有:

  • Dijkstra’s algorithm(单源最短路问题中需要在邻接表中找到某一点的最短邻接边,这可以将复杂度降低。)
  • Huffman coding(贪心算法的一个典型例子,采用优先队列构建最优的前缀编码树(prefixEncodeTree))
  • Prim’s algorithm for minimum spanning tree
  • Best-first search algorithms

这里简单介绍上述应用之一:Huffman coding

Huffman编码是一种变长的编码方案,对于每一个字符,所对应的二进制位串的长度是不一致的,但是遵守如下原则:

  • 出现频率高的字符的二进制位串的长度小
  • 不存在一个字符c的二进制位串s是除c外任意字符的二进制位串的前缀

遵守这样原则的Huffman编码属于变长编码,可以无损的压缩数据,压缩后通常可以节省20%-90%的空间,具体压缩率依赖于数据的固有结构。

Huffman编码的实现就是要找到满足这两种原则的 字符-二进制位串 对照关系,即找到最优前缀码的编码方案(前缀码:没有任何字符编码后的二进制位串是其他字符编码后位串的前缀)。
这里我们需要用到二叉树来表达最优前缀码,该树称为最优前缀码树
一棵最优前缀码树看起来像这样:

这里写图片描述

算法思想:用一个属性为freqeunce关键字的最小优先队列Q,将当前最小的两个元素x,y合并得到一个新元素z(z.frequence = x.freqeunce + y.frequence),
然后插入到优先队列中Q中,这样执行n-1次合并后,得到一棵最优前缀码树(这里不讨论算法的证明)。

一个常见的构建流程如下:

这里写图片描述

树中指向某个节点左孩子的边上表示位0,指向右孩子的边上的表示位1,这样遍历一棵最优前缀码树就可以得到对照表。

输出如下:

4 堆的应用:海量实数中(一亿级别以上)找到TopK(一万级别以下)的数集合。

  • A:通常遇到找一个集合中的TopK问题,想到的便是排序,因为常见的排序算法例如快排算是比较快了,然后再取出K个TopK数,时间复杂度为O(nlogn),当n很大的时候这个时间复杂度还是很大的;
  • B:另一种思路就是打擂台的方式,每个元素与K个待选元素比较一次,时间复杂度很高:O(k*n),此方案明显逊色于前者。

对于一亿数据来说,A方案大约是26.575424*n

  • C:由于我们只需要TopK,因此不需要对所有数据进行排序,可以利用堆得思想,维护一个大小为K的小顶堆,然后依次遍历每个元素e, 若元素e大于堆顶元素root,则删除root,将e放在堆顶,然后调整,时间复杂度为logK;若小于或等于,则考察下一个元素。这样遍历一遍后,最小堆里面保留的数就是我们要找的topK,整体时间复杂度为O(k+n*logk)约等于O(n*logk),大约是13.287712*n(由于k与n数量级差太多),这样时间复杂度下降了约一半。

A、B、C三个方案中,C通常是优于B的,因为logK通常是小于k的,当Kn的数量级相差越大,这种方式越有效。

以下为具体操作:


ps:大致测试了一下,10亿个数中找到top5需要140秒左右,应该是很快了。

5 总结

  • 堆是基于树的满足一定约束的重要数据结构,存在许多变体例如二叉堆、二项式堆、斐波那契堆(很高效)等。
  • 堆的几个基本操作都依赖于两个重要的函数siftUpsiftDown,堆的insert通常是在堆尾插入新元素并siftUp调整堆,而extractMin是在
    删除堆顶元素,然后将最后一个元素放置堆顶并调用siftDown调整堆。
  • 二叉堆是常用的一种堆,其是一棵二叉树;由于二叉树良好的性质,因此常常采用数组来存储堆。
    堆得基本操作的时间复杂度如下表所示:
heapify insert peek extractMin delete(i)
O(n) O(logn) O(1) O(logn) O(logn)
  • 二叉堆通常被用来实现堆排序算法,堆排序可以sort in place,堆排序的时间复杂度的上界是O(nlogn),是一种很优秀的排序算法。由于存在相同键值的两个元素处于两棵子树中,而两个元素的顺序可能会在后续的堆调整中发生改变,因此堆排序不是稳定的。降序排序需要建立小顶堆,升序排序需要建立大顶堆。
  • 堆是实现抽象数据类型优先队列的一种方式,优先队列有很广泛的应用,例如Huffman编码中使用优先队列利用贪心算法构建最优前缀编码树。
  • 堆的另一个应用就是在海量数据中找到TopK个数,思想是维护一个大小为K的二叉堆,然后不断地比较堆顶元素,判断是否需要执行替换对顶元素的操作,采用
    此方法的时间复杂度为n*logk,当kn的数量级差距很大的时候,这种方式是很有效的方法。

6 references

[1] https://en.wikipedia.org/wiki/Heap_(data_structure))

[2] https://en.wikipedia.org/wiki/Heapsort

[3] https://en.wikipedia.org/wiki/Priority_queue

[4] https://www.cnblogs.com/swiftma/p/6006395.html

[5] Thomas H.Cormen, Charles E.Leiserson, Ronald L.Rivest, Clifford Stein.算法导论[M].北京:机械工业出版社,2015:245-249

[6] Jon Bentley.编程珠玑[M].北京:人民邮电出版社,2015:161-174

1 2 收藏 评论

相关文章

可能感兴趣的话题



直接登录
跳到底部
返回顶部