数据科学家的命令行技巧

对于许多数据科学家来说,数据操作起始于Pandas或Tidyverse。从理论上看,这个概念没有错。毕竟,这是为什么这些工具首先存在的原因。然而,对于分隔符转换等简单任务来说,这些选项通常可能是过于重量级了。

有意掌握命令行应该在每个开发人员的技能链上,特别是数据科学家。学习shell中的来龙去脉无可否认地会让你更高效。除此之外,命令行还在计算方面有一次伟大的历史记录。例如,awk – 一种数据驱动的脚本语言。Awk首次出现于1977年,它是在传奇的K&R一书中的K,Brian Kernighan的帮助下出现的。在今天,大约50年之后,awk仍然与每年出现的新书保持相关联! 因此,可以肯定的是,对命令行技术的投入不会很快贬值的。

我们会谈及的内容

  • ICONV
  • HEAD
  • TR
  • WC
  • SPLIT
  • SORT & UNIQ
  • CUT
  • PASTE
  • JOIN
  • GREP
  • SED
  • AWK

ICONV

文件编码总是棘手的问题。目前大部分文件都是采用的 UTF-8 编码。要想了解 UTF-8 的魔力,可以看看这个优秀的视频。尽管如此,有时候我们还是会收到非 UTF-8 编码的文件。这种情况下就需要尝试转码。iconv 就是这种状况下的救世主。iconv 是一个简单的程序,可以输入某种编码的文本,然后以另一种编码输出。

  • 常用选项:
    • iconv -l 列出所有支持的编码
    • iconv -c 不作提示就丢弃无法转换的字符

HEAD

如果你是重度Pandas的用户,那么你会对head很熟悉。通常在处理新数据时,我们想要做的第一件事就是了解究竟存在那些东西。这会引起Panda启动,读取数据,然后调用df.head() – 很费劲,至少可以说。head,不需要任何标志,将输出文件的前10行。head真正的能力在于彻查清除操作。 例如,如果我们想将文件的分隔符从逗号改变为pipe通配符。一个快速测试将是:head mydata.csv | sed ‘s/,/|/g’

  • 有用的选项:
    • head -n 输出指定行
    • head -c 输出指定的字节

TR命令

Tr类似于翻译,它是基于文件清理的一个强大使用的工具。一个理想的用法是替换文件中的分隔符。

Tr的另一个特性是在你的处理中设置上所有的[:class:]变量。包括:

可以将这些多样化的变量链接在一起,组成一个强大的程序。下面是一个基于字数统计的程序,用来检查你的README文件是否使用过度。

另外一个例子用于正则表达式

  • 有用的选项:
    • tr -d删除字符
    • tr -s压缩字符
    • \b退格
    • \f换页
    • \v垂直选项卡
    • \NNN八进制值为NNN的字符

WC

字数统计。它的价值主要体现在使用 -l 参数可以进行行数统计。

个用这个工具来验证各个命令的输出实在方便。因此,如果我们要在文件中转换分隔符,然后运行 wc -l,验证总行数是相同的。如果不同,我们就知道一定是哪里出错了。

  • 常用选项:
    • wc -c 打印字节数
    • wc -m 打印字符数
    • wc -L 打印最长一行的长度
    • wc -w 打印字数

SPLIT命令

文件大小可以有显著变化。根据工作的不同,拆分文件是有益的,就像split。基本用法如下:

两个地方很奇怪:一个是命名方式,一个是缺少扩展名。后缀约定可以通过-d标识来数字化。添加文件扩展名,你需要执行下面这个find命令。他会给当前文件夹下的所有文件追加.csv后缀,所以需要小心使用。

  • 有效的选项:
    • split -b按特定字节大小拆分
    • split -a生成长度为N的后缀
    • split -x使用十六进制后缀分割

SORT & UNIQ

前面的命令是显而易见的:他们按照自己说的做。这两者提供了最重要的一击(即去重单词计数)。这是由于有uniq,它只处理重复的相邻行。因此在管道输出之前进行排序。一个有趣的事情是,sort -u将获得与sort file.txt | uniq相同的结果。

Sort确实对数据科学家来说是一种很有用的小技巧:能够根据特定的列对整个CSV进行排序。

这里的-t选项是指定逗号作为分隔符。通常假设是空格或制表符。此外,-k标志是用来指定我们的键的。它的语法是-km,n,m是起始字段,n是最后一个字段。

  • 有用的选项:
    • sort -f 忽略大小写
    • sort -r 逆序
    • sort -R 乱序
    • uniq -c 计算出现次数
    • uniq -d 只打印重复行

CUT命令

cut用于删除列。举个栗子,如果我们只想要第一列和第三列。

选择除了第一列以外的所有列

与其他的命令组合使用,cut命令作为过滤器

找出第二列中唯一值的数量。

PASTE

paste 是个有趣的小命令。如果你想合并两个文件,而这两个文件的内容又正好是有序的,那 paste 就可以这样做。

关于更多 SQL_-esque 变体,请看下面。

JOIN

Join是一种简单的、准切向的SQL。最大的区别在于Join将返回所有列,匹配可能只发生在一个字段上。默认情况下,join将尝试使用第一列作为匹配键。对于不同的结果,需要以下语法:

标准连接是一个内部连接。然而,外部连接也可以通过-af滞后来实现。另一个值得注意的是-e标志,如果发现有字段丢失,它可以用来替换成其他值。

虽然它不是最容易使用的命令,但是在绝望的时刻,它就是唯一可用的措施。

  • 常用的选项:
    • join -a 打印未成对的行
    • join -e 替换缺失字段
    • join -j 等同于 -1 FIELD -2 FIELD

GREP

全局搜索正则表达式并输出,或使用grep;可能是最知名的命令,并且有很好的理由。 Grep具有很强的能力,特别是在大型代码库中查找方法。在数据科学领域,它充当了其他命令的改进机制。但其标准用法也很有用。

对包含word/pattern的行数进行计数

Grep使用or运算符- \|来检索多个值.

  • 有用的选项
    • alias grep=”grep –color=auto” 使grep支持彩色输出
    • grep -E 使用扩展正则表达式
    • grep -w 仅匹配完整单词
    • grep -l 打印匹配文件的名称
    • grep -v 倒序匹配

大杀器

Sed和Awk是本文两个最有用的命令。为了简洁,我不会讨论那些令人费解的细节。相反,我会讨论各种各样的命令来证明他们令人印象深刻的实力。如果你想了解的更多,这本书就可以。

SED

在内核中sed是一个流编辑器。它擅长替换,但是也可以用来重构。
最基本的sed命令包含了s/old/new/g。也就是全局搜索旧值,替换新值。没有/g 我们的命令可能在第一次出现旧值就会终止。
为了尽快了解它的能力,我们来看一个例子。在这个情况你会拿到下面的文件:

我们要做的第一件事就是移除美元符。-i 标识表示就地修改。”就是代表一个零长度文件扩展,因此重写我们的初始文件。理想情况下,你会单独测试这些并输出到一个新文件。

下一步,我们的balance列的逗号。

最终,Jack有一天起来并准备辞职了。所以,再见吧,我的朋友。

就像你所看到的,sed功能强大,但是乐趣不止于此。

AWK

最好的放最后。Awk不仅是一个简单的命令:它是一个成熟的语言。在本文中包含的每一个命令中,awk目前是最酷的。如果你发现它令你印象深刻,这有大量的资源- 看,和
awk包含的常用案例:

  • 文本处理
  • 格式化文本报告
  • 执行计算操作
  • 执行字符串操作

Awk在其最初雏形可以与grep平行。

或者多使用一点魔法,让grep和cut结合。在这,awk对所有行通过word打印了以tab分隔的第三和第四列。-F,只是将分隔符变为逗号。

Awk具有大量有用的内置变量。例如, NF -字段数 – 和NR – 记录数。为了获取文件中这53个记录:

添加一个小窍门可以基于一个值或者多个值过滤。下面的第一个例子,会打印这些记录中第一列为string的行数和列。

多数值表达式:

计算第三列之和:

计算那些第一列值为“something”的第三列之和。

获取文件的行数列数:

打印出现过两次的行:

移除多行:

使用内置函数gsub()替换多个值。

这个awk命令合并了多个CSV文件,忽略头并在结尾追加。

需要精简一个大文件?好的,awk可以在sed的帮助下完成这件事。具体来说,基于一个行数,这个命令将一个大文件分为多个小文件。这个一行文件也会添加一个扩展名。

结束前

命令行拥有无穷的力量。本文所涵盖的命令行知识足以让你从零基础到入门。除了这些已涉及的内容外,针对日常数据操作还有需要可考虑的实用程序。Csvkitxsvq是其中三个值得关注的。如果你希望进一步深入到命令行的数据科学领域,那么请看此书。它也可以在此免费获得!

4 3 收藏 1 评论

相关文章

可能感兴趣的话题



直接登录
最新评论
跳到底部
返回顶部