浅谈算法和数据结构(7):二叉查找树

前文介绍了符号表的两种实现,无序链表和有序数组,无序链表在插入的时候具有较高的灵活性,而有序数组在查找时具有较高的效率,本文介绍的二叉查找树(Binary Search Tree,BST)这一数据结构综合了以上两种数据结构的优点。

二叉查找树具有很高的灵活性,对其优化可以生成平衡二叉树,红黑树等高效的查找和插入数据结构,后文会一一介绍。

一 定义

二叉查找树(Binary Search Tree),也称有序二叉树(ordered binary tree),排序二叉树(sorted binary tree),是指一棵空树或者具有下列性质的二叉树:

1. 若任意节点的左子树不空,则左子树上所有结点的值均小于它的根结点的值;

2. 若任意节点的右子树不空,则右子树上所有结点的值均大于它的根结点的值;

3. 任意节点的左、右子树也分别为二叉查找树。

4. 没有键值相等的节点(no duplicate nodes)。

如下图,这个是普通的二叉树:

在此基础上,加上节点之间的大小关系,就是二叉查找树:

二 实现

在实现中,我们需要定义一个内部类Node,它包含两个分别指向左右节点的Node,一个用于排序的Key,以及该节点包含的值Value,还有一个记录该节点及所有子节点个数的值Number。

查找

查找操作和二分查找类似,将key和节点的key比较,如果小于,那么就在Left Node节点查找,如果大于,则在Right Node节点查找,如果相等,直接返回Value。

该方法实现有迭代和递归两种。

递归的方式实现如下:

迭代的如下:

插入

插入和查找类似,首先查找有没有和key相同的,如果有,更新;如果没有找到,那么创建新的节点。并更新每个节点的Number值,代码实现如下:

插入操作图示如下:

下面是插入动画效果:

随机插入形成树的动画如下,可以看到,插入的时候树还是能够保持近似平衡状态:

最大最小值

如下图可以看出,二叉查找树的最大最小值是有规律的:

从图中可以看出,二叉查找树中,最左和最右节点即为最小值和最大值,所以我们只需迭代调用即可。

以下是递归的版本:

Floor和Ceiling

查找Floor(key)的值就是所有<=key的最大值,相反查找Ceiling的值就是所有>=key的最小值,下图是Floor函数的查找示意图:

以查找Floor为例,我们首先将key和root元素比较,如果key比root的key小,则floor值一定在左子树上;如果比root的key大,则有可能在右子树上,当且仅当其右子树有一个节点的key值要小于等于该key;如果和root的key相等,则floor值就是key。根据以上分析,Floor方法的代码如下,Ceiling方法的代码类似,只需要把符号换一下即可:

删除

删除元素操作在二叉树的操作中应该是比较复杂的。首先来看下比较简单的删除最大最小值得方法。

以删除最小值为例,我们首先找到最小值,及最左边左子树为空的节点,然后返回其右子树作为新的左子树。操作示意图如下:

代码实现如下:

删除最大值也是类似。

现在来分析一般情况,假定我们要删除指定key的某一个节点。这个问题的难点在于:删除最大最小值的操作,删除的节点只有1个子节点或者没有子节点,这样比较简单。但是如果删除任意节点,就有可能出现删除的节点有0个,1 个,2个子节点的情况,现在来逐一分析。

当删除的节点没有子节点时,直接将该父节点指向该节点的link设置为null。

当删除的节点只有1个子节点时,将该自己点替换为要删除的节点即可。

当删除的节点有2个子节点时,问题就变复杂了。

假设我们删除的节点t具有两个子节点。因为t具有右子节点,所以我们需要找到其右子节点中的最小节点,替换t节点的位置。这里有四个步骤:

1. 保存带删除的节点到临时变量t

2. 将t的右节点的最小节点min(t.right)保存到临时节点x

3. 将x的右节点设置为deleteMin(t.right),该右节点是删除后,所有比x.key最大的节点。

4. 将x的做节点设置为t的左节点。

整个过程如下图:

对应代码如下:

以上二叉查找树的删除节点的算法不是完美的,因为随着删除的进行,二叉树会变得不太平衡,下面是动画演示。

三 分析

二叉查找树的运行时间和树的形状有关,树的形状又和插入元素的顺序有关。在最好的情况下,节点完全平衡,从根节点到最底层叶子节点只有lgN个节点。在最差的情况下,根节点到最底层叶子节点会有N各节点。在一般情况下,树的形状和最好的情况接近。

在分析二叉查找树的时候,我们通常会假设插入的元素顺序是随机的。对BST的分析类似与快速排序中的查找:

BST中位于顶部的元素就是快速排序中的第一个划分的元素,该元素左边的元素全部小于该元素,右边的元素均大于该元素。

对于N个不同元素,随机插入的二叉查找树来说,其平均查找/插入的时间复杂度大约为2lnN,这个和快速排序的分析一样,具体的证明方法不再赘述,参照快速排序。

 

四 总结

有了前篇文章 二分查找的分析,对二叉查找树的理解应该比较容易。下面是二叉查找树的时间复杂度:

它和二分查找一样,插入和查找的时间复杂度均为lgN,但是在最坏的情况下仍然会有N的时间复杂度。原因在于插入和删除元素的时候,树没有保持平衡。我们追求的是在最坏的情况下仍然有较好的时间复杂度,这就是后面要讲的平衡查找树的内容了。下文首先讲解平衡查找树的最简单的一种:2-3查找树。

希望本文对您了解二叉查找树有所帮助。

1 5 收藏 1 评论

相关文章

可能感兴趣的话题



直接登录
最新评论
跳到底部
返回顶部