蜕变成蝶:Linux设备驱动之异步通知和异步I/O

在设备驱动中使用异步通知可以使得对设备的访问可进行时,由驱动主动通知应用程序进行访问。因此,使用无阻塞I/O的应用程序无需轮询设备是否可访问,而阻塞访问也可以被类似“中断”的异步通知所取代。异步通知类似于硬件上的“中断”概念,比较准确的称谓是“信号驱动的异步I/O”。

1、异步通知的概念和作用

影响:阻塞–应用程序无需轮询设备是否可以访问

非阻塞–中断进行通知

即:由驱动发起,主动通知应用程序

2、linux异步通知编程

2.1 linux信号

作用:linux系统中,异步通知使用信号来实现

函数原型为:

原型比较难理解可以分解为

第一个参数是指定信号的值,第二个参数是指定针对前面信号的处理函数

2.2 信号的处理函数(在应用程序端捕获信号)

signal()函数

例子:

2.3 信号的释放 (在设备驱动端释放信号)

为了是设备支持异步通知机制,驱动程序中涉及以下3项工作

(1)、支持F_SETOWN命令,能在这个控制命令处理中设置filp->f_owner为对应的进程ID。不过此项工作已由内核完成,设备驱动无须处理。

(2)、支持F_SETFL命令处理,每当FASYNC标志改变时,驱动函数中的fasync()函数得以执行。因此,驱动中应该实现fasync()函数

(3)、在设备资源中可获得,调用kill_fasync()函数激发相应的信号

设备驱动中异步通知编程:

(1)、fasync_struct加入设备结构体模板中

(2)、两个函数

处理FASYNC标志的两个函数: int fasync_helper(int fd,struct file *filp,int mode,struct fasync_struct **fa);

释放信号的函数: void kill_fasync(struct fasync_struct **fa,int sig,int band);

和其他结构体指针放到设备结构体中,模板如下

2.4 在设备驱动中的fasync()函数中,只需简单地将该函数的3个参数以及fasync_struct结构体指针的指针作为第四个参数传入fasync_helper()函数就可以了,模板如下

2.5 在设备资源可获得时应该调用kill_fasync()函数释放SIGIO信号,可读时第三个参数为POLL_IN,可写时第三个参数为POLL_OUT,模板如下

2.6 最后在文件关闭时,要将文件从异步通知列表中删除

3、linux2.6异步I/O
同步I/O:linux系统中最常用的输入输出(I/O)模型是同步I/O,在这个模型中,当请求发出后,应用程序就会阻塞,知道请求满足

异步I/O:I/O请求可能需要与其它进程产生交叠

Linux 系统中最常用的输入/输出(I/O)模型是同步 I/O。在这个模型中,当请求发出之后,应用程序就会阻塞,直到请求满足为止。这是很好的一种解决方案,因为调用应用程序在等待 I/O 请求完成时不需要使用任何中央处理单元(CPU)。但是在某
些情况下,I/O 请求可能需要与其他进程产生交叠。可移植操作系统接口(POSIX)异步 I/O(AIO)应用程序接口(API)就提供了这种功能

4.1、AIO系列API:

aio_read–异步读

aio_read 函数的原型如下:

aio_read()函数在请求进行排队之后会立即返回。如果执行成功,返回值就为 0;如果出现错误,返回值就为−1,并设置 errno 的值。

aio_write–异步写

aio_write()函数用来请求一个异步写操作,其函数原型如下:

aio_write()函数会立即返回,说明请求已经进行排队(成功时返回值为 0,失败时返回值为−1,并相应地设置 errno。

aio_error–确定请求的状态

aio_error 函数被用来确定请求的状态,其原型如下:

这个函数可以返回以下内容。

EINPROGRESS:说明请求尚未完成。

ECANCELLED:说明请求被应用程序取消了。

-1:说明发生了错误,具体错误原因由 errno 记录。

aio_return–获得异步操作的返回值

异步 I/O 和标准块 I/O 之间的另外一个区别是不能立即访问这个函数的返回状态,因为并没有阻塞在 read()调用上。在标准的 read()调用中,返回状态是在该函数返回时提供的。但是在异步 I/O 中,我们要使用 aio_return()函数。这个函数的原型如下:

只有在 aio_error()调用确定请求已经完成(可能成功,也可能发生了错误)之后,才会调用这个函数。aio_return()的返回值就等价于同步情况中 read 或 write 系统调用的返回值(所传输的字节数,如果发生错误,返回值就为−1)。

aio_suspend–挂起异步操作,知道异步请求完成为止

aio_suspend()函数来挂起(或阻塞)调用进程,直到异步请求完成为止,此时会产生一个信号,或者发生其他超时操作。调用者提供了一个 aiocb 引用列表,其中任何一个完成都会导致 aio_suspend()返回。aio_suspend 的函数原型如下:

aio_cancel–取消异步请求

aio_cancel()函数允许用户取消对某个文件描述符执行的一个或所有 I/O 请求。其原型如下:

如果要取消一个请求,用户需提供文件描述符和 aiocb 引用。如果这个请求被成功取消了,那么这个函数就会返回 AIO_CANCELED。如果请求完成了,这个函数就会返回AIO_NOTCANCELED。 如果要取消对某个给定文件描述符的所有请求,用户需要提供这个文件的描述符以及一个对 aiocbp 的 NULL 引用。如果所有的请求都取消了,这个函数就会返回AIO_CANCELED ;如果至少有一个请求没有被取消,那么这个函数就会返回AIO_NOT_CANCELED;如果没有一个请求可以被取消,那么这个函数就会返回AIO_ALLDONE。然后,可以使用 aio_error()来验证每个 AIO 请求,如果某请求已经被取消了,那么 aio_error()就会返回−1,并且 errno 会被设置为 ECANCELED。

lio_listio–同时发起多个传输(一次系统调用可以启动大量的I/O操作)

lio_listio()函数可用于同时发起多个传输。这个函数非常重要,它使得用户可以在一个系统调用(一次内核上下文切换)中启动大量的 I/O 操作。lio_listio API 函数的原型如下:

mode 参数可以是 LIO_WAIT 或 LIO_NOWAIT。LIO_WAIT 会阻塞这个调用,直到所有的 I/O 都完成为止。在操作进行排队之后,LIO_NOWAIT 就会返回。list 是一个 aiocb 引用的列表,最大元素的个数是由 nent 定义的。如果 list 的元素为 NULL,lio_listio()会将其忽略。

3.2、使用信号作为AIO的通知

信号作为异步通知的机制在AIO中依然使用,为了使用信号,使用AIO的应用程序同样需要定义信号处理程序,在指定的信号被触发时,调用这个处理程序,作为信号上下文的一部分,特定的 aiocb 请求被提供给信号处理函数用来区分 AIO 请求。 下面代码清单给出了使用信号作为 AIO 异步 I/O 通知机制的例子。

3.3 使用回调函数作为AIO的通知

代码清单给出了使用回调函数作为 AIO 异步 I/O 请求完成的通知机制的例子

3.4 AIO与设备驱动

在内核中,每个I/O请求都对应一个kiocb结构体,其ki_filp成员只想对应的file指针,通过is_sync_kiocb判断某kiocb是否为同步I/O请求,如果是返回真,表示为异步I/O请求。

块设备和网络设备:本身是异步的

字符设备:必须明确应支持AIO(极少数是异步I/O操作)

 字符设备驱动程序中file_operations 包含 3 个与 AIO 相关的成员函数,如下所示:

over~

打赏支持我写出更多好文章,谢谢!

打赏作者

打赏支持我写出更多好文章,谢谢!

任选一种支付方式

1 3 收藏 评论

关于作者:李辉

湖南省天杰信息技术有限公司创始人之一,主要从事基站智能门禁锁、智能蓝牙锁、智慧商城等等的研发。在2015年1月完成《24小时学通Linux内核》的写作,目前其关于嵌入式Linux 驱动的写作仍在进行中。 个人主页 · 我的文章 · 2 ·    

相关文章

可能感兴趣的话题



直接登录
跳到底部
返回顶部